DNA Scissors for genetic surgery?

A story started circulating last week focusing on zinc finger nucleases. These are enzymes that cut DNA in a very specific way, allowing for a new, different means of altering genes in vitro and possibly in vivo. Genetic treatments are the exciting future medicine we all hope for, especially with the genetic disorders that are inborn and uncorrectable otherwise. The ability to correct disorders by correcting the body at the genes is exciting, so this story generates lots of interest. Read it yourself here.

Fruit Flies In Space…

Today’s a twofer! Today’s LinkedIn video reminded me of the paper I presented for my pathology class (which was more like a journal club). Both deal with the study of fruit flies (Drosophilia sp.) in space. The video focuses on the role of the flies in studies on the ISS in space, while the paper focuses on a specific study done in 2006 and the probable importance of that study.

Specifically, the paper focused on the way that changes to gravity during the development of Drosophilia sp. resulted in altered immune pathways, leading to specific weaknesses in those flies raised in a microgravity environment. This finding in a model species (one that can be used to illustrate how humans work, but on a simpler scale), may help explain why many astronauts are more prone to illness upon return from space and may also help provide clues for how to counter the impact of gravity on immunity in the future.

 

US Supreme Court Says Human Genes Can’t Be Patented

In a demonstration of just how deeply entrenched science and medicine are in our everyday lives, an article in the Wall Street Journal today announced an important decision from the US Supreme Court: Human Genes cannot be patented.

This has been hotly contested: those arguing for patent have argued that the research and development done with the genes is costly, and without the protection of patents, it is likely to go unfunded. Those arguing against patent have pointed out the flaw of patenting a gene carried by millions of people (or even just a few), and worse, the trouble that is caused when a carrier of a gene seeks treatment for their condition, only to find out their own genetic code is locked under patent protection.

I, personally, am an advocate of openness and freedom. I believe that keeping medical research like this locked under patent is absurd, and often hinders advancements in treatment. I will note, however, that I am not currently employed by any researchers, and thus I am not bound by any such privacy agreements myself. I can understand if a scientist’s work and livelihood is dependent on funding and thus on signing privacy agreements. I may find them absurd, but at the end of the day, pragmatism still has its place.

Still, I think this was a victory for the open exchange of ideas. What do you think? Will this be a boon to medicine? Should it have ever been in question?